#683 Linux-libre
Linux 2021-10-29内核需要和硬件打交道,中间少不了硬件厂商的支持,可是有些厂商不愿提供相关的资料,只提供了一些二进制文件,无法审查,无法修改。
Linux 内核中一直包含着很多这样的二进制 blob。
coding in a complicated world
内核需要和硬件打交道,中间少不了硬件厂商的支持,可是有些厂商不愿提供相关的资料,只提供了一些二进制文件,无法审查,无法修改。
Linux 内核中一直包含着很多这样的二进制 blob。
这篇文章讨论的是 Reids 数据到期之后发生了什么。
Redis 并不会立即删除过期数据,而是根据配置的策略来处理。
config get maxmemory-policy
# maxmemory-policy
# volatile-ttl
When Redis is used as a cache, often it is handy to let it automatically evict old data as you add new data. This behavior is very well known in the community of developers, since it is the default behavior of the popular memcached system.
Redis 和 Memcached 一样会自动清除旧数据。
LRU is actually only one of the supported eviction methods. This page covers the more general topic of the Redis maxmemory
directive that is used in order to limit the memory usage to a fixed amount, and it also covers in depth the LRU algorithm used by Redis, that is actually an approximation of the exact LRU.
Starting with Redis version 4.0, a new LFU (Least Frequently Used) eviction policy was introduced. This is covered in a separated section of this documentation.
The maxmemory configuration directive is used in order to configure Redis to use a specified amount of memory for the data set. It is possible to set the configuration directive using the redis.conf file, or later using the CONFIG SET command at runtime.
For example in order to configure a memory limit of 100 megabytes, the following directive can be used inside the redis.conf
file.
maxmemory 100mb
Setting maxmemory to zero results into no memory limits. This is the default behavior for 64 bit systems, while 32 bit systems use an implicit memory limit of 3GB.
Markjour 注释:设置成 0 的话,64 位系统上表示没有限制,32 位系统则隐式地使用 3GB 内存限制。
When the specified amount of memory is reached, it is possible to select among different behaviors, called policies. Redis can just return errors for commands that could result in more memory being used, or it can evict some old data in order to return back to the specified limit every time new data is added.
The exact behavior Redis follows when the maxmemory
limit is reached is configured using the maxmemory-policy
configuration directive.
The following policies are available:
The policies volatile-lru, volatile-random and volatile-ttl behave like noeviction if there are no keys to evict matching the prerequisites.
Picking the right eviction policy is important depending on the access pattern of your application, however you can reconfigure the policy at runtime while the application is running, and monitor the number of cache misses and hits using the Redis INFO output in order to tune your setup.
In general as a rule of thumb:
The volatile-lru and volatile-random policies are mainly useful when you want to use a single instance for both caching and to have a set of persistent keys. However it is usually a better idea to run two Redis instances to solve such a problem.
It is also worth noting that setting an expire to a key costs memory, so using a policy like allkeys-lru is more memory efficient since there is no need to set an expire for the key to be evicted under memory pressure.
Markjour 注释:TTL 的处理需要占用额外的内存,如果是用 allkeys-lru
策略则可以不需要设置 TTL,可以节约内存。
It is important to understand that the eviction process works like this:
maxmemory
limit , it evicts keys according to the policy.So we continuously cross the boundaries of the memory limit, by going over it, and then by evicting keys to return back under the limits.
If a command results in a lot of memory being used (like a big set intersection stored into a new key) for some time the memory limit can be surpassed by a noticeable amount.
Markjour 注释: 常用的 LRU 过期删除策略:定时,Lazy Expire,LFU,FIFO,RANDOM,TTL。
Markjour 注释: 出于节约资源(内存)的考虑,Redis LRU 算法并非精确的 LRU 实现。
Redis LRU algorithm is not an exact implementation. This means that Redis is not able to pick the best candidate for eviction, that is, the access that was accessed the most in the past. Instead it will try to run an approximation of the LRU algorithm, by sampling a small number of keys, and evicting the one that is the best (with the oldest access time) among the sampled keys.
However since Redis 3.0 the algorithm was improved to also take a pool of good candidates for eviction. This improved the performance of the algorithm, making it able to approximate more closely the behavior of a real LRU algorithm.
What is important about the Redis LRU algorithm is that you are able to tune the precision of the algorithm by changing the number of samples to check for every eviction. This parameter is controlled by the following configuration directive:
maxmemory-samples 5
The reason why Redis does not use a true LRU implementation is because it costs more memory. However the approximation is virtually equivalent for the application using Redis. The following is a graphical comparison of how the LRU approximation used by Redis compares with true LRU.
The test to generate the above graphs filled a Redis server with a given number of keys. The keys were accessed from the first to the last, so that the first keys are the best candidates for eviction using an LRU algorithm. Later more 50% of keys are added, in order to force half of the old keys to be evicted.
You can see three kind of dots in the graphs, forming three distinct bands.
In a theoretical LRU implementation we expect that, among the old keys, the first half will be expired. The Redis LRU algorithm will instead only probabilistically expire the older keys.
As you can see Redis 3.0 does a better job with 5 samples compared to Redis 2.8, however most objects that are among the latest accessed are still retained by Redis 2.8. Using a sample size of 10 in Redis 3.0 the approximation is very close to the theoretical performance of Redis 3.0.
Note that LRU is just a model to predict how likely a given key will be accessed in the future. Moreover, if your data access pattern closely resembles the power law, most of the accesses will be in the set of keys that the LRU approximated algorithm will be able to handle well.
In simulations we found that using a power law access pattern, the difference between true LRU and Redis approximation were minimal or non-existent.
However you can raise the sample size to 10 at the cost of some additional CPU usage in order to closely approximate true LRU, and check if this makes a difference in your cache misses rate.
To experiment in production with different values for the sample size by using the CONFIG SET maxmemory-samples <count>
command, is very simple.
Markjour 注释:1. 在 Redis 3.0 中,LRU 算法的精确度提高了。2. 按照默认的 5 个样本就足够了。
Starting with Redis 4.0, a new Least Frequently Used eviction mode is available. This mode may work better (provide a better hits/misses ratio) in certain cases, since using LFU Redis will try to track the frequency of access of items, so that the ones used rarely are evicted while the one used often have an higher chance of remaining in memory.
If you think at LRU, an item that was recently accessed but is actually almost never requested, will not get expired, so the risk is to evict a key that has an higher chance to be requested in the future. LFU does not have this problem, and in general should adapt better to different access patterns.
To configure the LFU mode, the following policies are available:
LFU is approximated like LRU: it uses a probabilistic counter, called a Morris counter in order to estimate the object access frequency using just a few bits per object, combined with a decay period so that the counter is reduced over time: at some point we no longer want to consider keys as frequently accessed, even if they were in the past, so that the algorithm can adapt to a shift in the access pattern.
Markjour 注释:概率计数器(莫里斯计数器)。
近似计数算法允许使用少量内存计算大量事件。1977年由贝尔实验室的罗伯特·莫里斯(密码学家)发明,它使用概率技术来增加计数器。
Those informations are sampled similarly to what happens for LRU (as explained in the previous section of this documentation) in order to select a candidate for eviction.
However unlike LRU, LFU has certain tunable parameters: for instance, how fast should a frequent item lower in rank if it gets no longer accessed? It is also possible to tune the Morris counters range in order to better adapt the algorithm to specific use cases.
By default Redis 4.0 is configured to:
Markjour 注释: LFU 有可调节参数,上面是 Redis 4.0 的两个默认配置。
Those should be reasonable values and were tested experimental, but the user may want to play with these configuration settings in order to pick optimal values.
Instructions about how to tune these parameters can be found inside the example redis.conf file in the source distribution, but briefly, they are:
lfu-log-factor 10
lfu-decay-time 1
The decay time is the obvious one, it is the amount of minutes a counter should be decayed, when sampled and found to be older than that value. A special value of 0 means: always decay the counter every time is scanned, and is rarely useful.
The counter logarithm factor changes how many hits are needed in order to saturate the frequency counter, which is just in the range 0-255. The higher the factor, the more accesses are needed in order to reach the maximum. The lower the factor, the better is the resolution of the counter for low accesses, according to the following table:
factor | 100 hits | 1000 hits | 100K hits | 1M hits | 10M hits |
---|---|---|---|---|---|
0 | 104 | 255 | 255 | 255 | 255 |
1 | 18 | 49 | 255 | 255 | 255 |
10 | 10 | 18 | 142 | 255 | 255 |
100 | 8 | 11 | 49 | 143 | 255 |
So basically the factor is a trade off between better distinguishing items with low accesses VS distinguishing items with high accesses. More informations are available in the example redis.conf file self documenting comments.
Since LFU is a new feature, we'll appreciate any feedback about how it performs in your use case compared to LRU.
TTL (过期时间) 相关命令:
SET key value [EX seconds|PX milliseconds|EXAT timestamp|PXAT milliseconds-timestamp|KEEPTTL] [NX|XX] [GET]
SETEX key seconds value
PSETEX key milliseconds value
GETEX key [EX seconds|PX milliseconds|EXAT timestamp|PXAT milliseconds-timestamp|PERSIST]
TTL key
PTTL key
EXPIRETIME key # 获取过期时间戳,单位为秒
PEXPIRETIME key # 获取过期时间戳,单位为毫秒
EXPIRE key seconds
PEXPIRE key milliseconds
EXPIREAT key timestamp
PEXPIREAT key milliseconds-timestamp
相对于 LRU (Least Recently Used), Redis 采用 LFU (Least Frequently Used) 算法对于其应用场景来说确实是个不错的选择。
一共八种策略:
noeviction
拒绝新值写入,不自动删除volatile-ttl
按 TTL 值删除volatile-lru
/ allkeys-lru
LRUvolatile-lfu
/ allkeys-lfu
LFUvolatile-random
/ allkeys-random
随机删除evict [ɪˈvɪkt] vt. 驱逐;逐出
eviction [ɪˈvɪkʃn] n. 逐出;赶出;收回
volatile [ˈvɒlətaɪl]
adj. [化学] 挥发性的;不稳定的;爆炸性的;反复无常的
n. 挥发物;有翅的动物
n. (Volatile)人名;(意)沃拉蒂莱
国产的两个协议:
个人或法人不得以任何方式诱导或强迫其全职或兼职员工或其独立承包人以口头或书面形式同意直接或间接限制、削弱或放弃其所拥有的,受相关与劳动和就业有关的法律、法规、规则和标准保护的权利或补救措施,无论该等书面或口头协议是否被该司法管辖区的法律所承认,该等个人或法人实体也不得以任何方法限制其雇员或独立承包人向版权持有人或监督许可证合规情况的有关当局报告或投诉上述违反许可证的行为的权利。
https://unlicense.org/
最近听说的一个协议。
只有三点:
只有 Unlicense 解决了这个问题。
MulanPSL-2.0
评分 100 2. 许可协议类型: Permissive 3. 司法管辖区: Not specified
4.a 授予专利权: Yes
4.b 专利报复条款: Yes 5. 指定“增强型归属”: No 6. 解决“隐私漏洞”: No 7. 指定“不推广”功能: Yes
Apache-2.0
评分 100 2. 许可协议类型: Permissive 3. 司法管辖区: Not specified
4.a 授予专利权: Yes
4.b 专利报复条款: Yes 5. 指定“增强型归属”: No 6. 解决“隐私漏洞”: No 7. 指定“不推广”功能: Yes
BSD-3-Clause
评分 100 2. 许可协议类型: Permissive 3. 司法管辖区: Not specified
4.a 授予专利权: No
4.b 专利报复条款: No 5. 指定“增强型归属”: No 6. 解决“隐私漏洞”: No 7. 指定“不推广”功能: Yes
EPL-1.0
评分 100 2. 许可协议类型: Weak copyleft 3. 司法管辖区: Specified: State of New York, US
4.a 授予专利权: Yes
4.b 专利报复条款: Yes 5. 指定“增强型归属”: No 6. 解决“隐私漏洞”: No 7. 指定“不推广”功能: Yes
GPL-2.0
评分 100 2. 许可协议类型: Strong copyleft 3. 司法管辖区: Not specified
4.a 授予专利权: No
4.b 专利报复条款: No 5. 指定“增强型归属”: No 6. 解决“隐私漏洞”: No 7. 指定“不推广”功能: Yes
LGPL-2.1
评分 100 2. 许可协议类型: Weak copyleft 3. 司法管辖区: Not specified
4.a 授予专利权: No
4.b 专利报复条款: No 5. 指定“增强型归属”: No 6. 解决“隐私漏洞”: No 7. 指定“不推广”功能: Yes
LGPL-3.0
评分 100 2. 许可协议类型: Weak copyleft 3. 司法管辖区: Not specified
4.a 授予专利权: Yes
4.b 专利报复条款: Yes 5. 指定“增强型归属”: No 6. 解决“隐私漏洞”: No 7. 指定“不推广”功能: Yes
MIT
评分 100 2. 许可协议类型: Permissive 3. 司法管辖区: Not specified
4.a 授予专利权: No
4.b 专利报复条款: No 5. 指定“增强型归属”: No 6. 解决“隐私漏洞”: No 7. 指定“不推广”功能: Yes
MPL-2.0
评分 100 2. 许可协议类型: Weak copyleft 3. 司法管辖区: Not specified
4.a 授予专利权: Yes
4.b 专利报复条款: Yes 5. 指定“增强型归属”: Yes 6. 解决“隐私漏洞”: No 7. 指定“不推广”功能: Yes
Unlicense
评分 100 2. 许可协议类型: Weak copyleft 3. 司法管辖区: Not specified
4.a 授予专利权: Yes
4.b 专利报复条款: No 5. 指定“增强型归属”: No 6. 解决“隐私漏洞”: Yes 7. 指定“不推广”功能: No
WTFPL
评分 100 2. 许可协议类型: Permissive 3. 司法管辖区: Not specified
4.a 授予专利权: Yes
4.b 专利报复条款: Yes 5. 指定“增强型归属”: No 6. 解决“隐私漏洞”: No 7. 指定“不推广”功能: No
昨天历史上第一次,美国联邦上诉法院判决,"开源协议"是一种著作权协议,违反协议就是侵权行为。
Thunderbolt(又称“雷电”,苹果中国译为“雷雳”[4])是由英特尔发表的连接器标准,目的在于当作电脑与其他设备之间的通用总线,第一代与第二代接口是与 Mini DisplayPort 集成,较新的第三代开始改为与 USB Type-C 结合,并能提供电源。
早期由英特尔独立研发,使用光纤传输;后来在一次科技展示会场上,苹果公司看到了早期光纤传输的原型后,主动对英特尔表示兴趣并给予开发上的建议,致使正式发表的第一代从光纤改用铜线和苹果的 Mini DisplayPort 外形。
第三代改为使用 USB Type-C 接口。由于二合一的集成特点,因此它既能以双向 40 Gbit/s 传输数据(40 Gbit/s + 40 Gbit/s,特别是针对外置高速网络时),既能兼容 Mini DisplayPort 设备直接连接 Thunderbolt 接口传输视频与声音信号,也可连接 Apple Thunderbolt Display 直接同时输出视频、声音与数据,且不用如传统使用多条连接线。
版本 时间 厂商 代号 带宽 USB Thunderbolt 开发版 2009 Intel Light Peak Thunderbolt 2011/02 Intel
AppleLight Peak 10 Gbit/s 与 USB 3.0 同时应用在未来的系统中,扮演互补角色。
具有这种接口的 MacBook Pro 及一根 29 美元的连接线。
苹果独享这技术专利权一年。Thunderbolt 2 2013 Intel
AppleFalcon Ridge 20 Gbit/s Thunderbolt 3 2015/06/02 Intel Alpine Ridge 40 Gbit/s 连接端口更换为 USB Type-C Thunderbolt 4 2020/07/08 Intel 40 Gbit/s
我的主力开发环境是大概 14 年 4 月在 DELL 官方 (dell.com) 买的一台 Inspiron 14R (5437) 笔记本。
PS: 这台笔记本原本是我老婆办公用, 用了将近五年之后, 于 2019 年 1 月在换了一台 小米 Air 13.3, 然后我就有笔记本了...到现在我也用了两年多了。
除了房产税的消息,这是新闻联播内容中最让我感兴趣的第二个点,主要是我有孩子,自然对教育两个字特别感兴趣。
不过我本以为是和 “双减” 有关,但仔细了解之后才知道,立法是为了明确监护人应该承担的教育义务,明确家庭和学校在教育方面的界限。
但也没有规定什么处罚措施,据说是删掉了,只是强调了国家对家庭教育的指导、支持和配套服务。
今天的最重要新闻:
新华社10月23日消息,为积极稳妥推进房地产税立法与改革,引导住房合理消费和土地资源节约集约利用,促进房地产市场平稳健康发展,第十三届全国人民代表大会常务委员会第三十一次会议决定:授权国务院在部分地区开展房地产税改革试点工作。
———— 新华社:全国人大常委会授权国务院在部分地区开展房地产税改革试点工作
我不懂法律条文,但我之前听说,房产税将会很大程度改变中国楼市。观察ing...
开源中国上看到有人通过一些实验验证来视图说服 Python 核心团队移除 GIL,根据他的数据,移除 GIL 可以大幅提升多线程性能(19.8 倍)。
版本 | 日期 |
---|---|
6.2.8 | October 2021 |
6.2.4 | August 2021 |
6.0.20 | April 2021 |
6.0.12 | January 2021 |
6.0.8 | September 2020 |
6.0 | May 2020 |
5.6.0 | April 2020 |
5.5 Preview | April 2019 |
5.4.14 | February 2020 |
5.4.10 | December 2019 |
5.4.6 | July 2019 |
5.4.4 | June 2019 |
5.4.2 | April 2019 |
5.4 | December 2018 |
5.2.2 | August 2018 |
5.3 beta | July 2018 |
5.2 | June 2018 |
5.0.2 | 2018 March |
5.0 | November 2017 |
4.5 | May 2017 |
4.4 | December 2016 |
4.3.0-230 | August 2, 2016 |
4.2.1-30 | October 18, 2015 |
4.0.0-49 | June 18, 2015 |
0.99.5-24 | February 15, 2015 |
0.99.5-11 | January 5, 2015 |
参见:2022/04/29,Redis 7 的变化