AI
2025-03-19
Model Context Protocol(模型上下文协议,简称 MCP)是由 Anthropic 公司于 2024 年末推出的开放标准协议,旨在为大型语言模型(LLM)与外部数据源、工具及系统提供标准化连接接口。其核心目标是解决传统 AI 系统集成复杂、维护困难的问题,通过定义通用规则实现 LLM 与数据库、API、本地文件等资源的即插即用式交互。
我的理解:就是用来向 AI 模型拓展一些功能,比如获取数据、运行程序、发送邮件、订购商品等,将 AI 这个大脑连接上真实世界。
Anthropic 就是做 Claude AI 编程模型的那家公司,设计这套协议用来拓展 AI 模型,比如执行目录查看、编辑文件、文本查找、文本替换、Git 提交、执行代码格式化工具。
但是这套协议可以用来拓展到方方面面,比如将我司的邮件服务、短信服务、AppPush 等提供出去,这样支持 MCP 的 IDE 可以在开发过程中直接发送邮件、短信、应用推送出去了。
最简单的场景,比如执行单元测试之后,将测试结果推送给相关人员。
因为目前只有几个 IDE 支持,但是我们也不一定只能用来做代码开发,直接在里面管理工作理论上也是可行。
还拿邮件功能举例,比如可以开发 MCP 接入自己的客户信息,然后在 AI 交互中安排自动化场景营销任务。
PS:MCP 这样的开放标准肯定是 AI 应用的大势所趋。
flowchart
subgraph APP
AppStart[App 启动]
AppGetTask[接收任务]
AppParse[解析 AI 输出]
AppRun[App 执行任务]
end
subgraph MCP[MCP Server]
McpResource[资源/接口]
McpRun[MCP 执行任务]
end
User --> |提交任务|AppGetTask
AppGetTask --> |请求大模型<BR>系统提示词 + 任务描述|Model[AI 大模型]
AppStart -->|获取信息| McpResource
Model --> AppParse --> AppRun
AppRun <--> McpRun
资源:
- 官方提供了一些实现:https://github.com/modelcontextprotocol/servers
- Cline 的系统提示词:
- https://glama.ai/mcp/clients
- https://glama.ai/mcp/servers
Introducing the Model Context Protocol
2024 年 11 月 25 日
https://www.anthropic.com/news/model-context-protocol
Today, we're open-sourcing the Model Context Protocol (MCP), a new standard for connecting AI assistants to the systems where data lives, including content repositories, business tools, and development environments. Its aim is to help frontier models produce better, more relevant responses.
As AI assistants gain mainstream adoption, the industry has invested heavily in model capabilities, achieving rapid advances in reasoning and quality. Yet even the most sophisticated models are constrained by their isolation from data—trapped behind information silos and legacy systems. Every new data source requires its own custom implementation, making truly connected systems difficult to scale.
MCP addresses this challenge. It provides a universal, open standard for connecting AI systems with data sources, replacing fragmented integrations with a single protocol. The result is a simpler, more reliable way to give AI systems access to the data they need.
Model Context Protocol
The Model Context Protocol is an open standard that enables developers to build secure, two-way connections between their data sources and AI-powered tools. The architecture is straightforward: developers can either expose their data through MCP servers or build AI applications (MCP clients) that connect to these servers.
Today, we're introducing three major components of the Model Context Protocol for developers:
- The Model Context Protocol specification and SDKs
- Local MCP server support in the Claude Desktop apps
- An open-source repository of MCP servers
Claude 3.5 Sonnet is adept at quickly building MCP server implementations, making it easy for organizations and individuals to rapidly connect their most important datasets with a range of AI-powered tools. To help developers start exploring, we’re sharing pre-built MCP servers for popular enterprise systems like Google Drive, Slack, GitHub, Git, Postgres, and Puppeteer.
Early adopters like Block and Apollo have integrated MCP into their systems, while development tools companies including Zed, Replit, Codeium, and Sourcegraph are working with MCP to enhance their platforms—enabling AI agents to better retrieve relevant information to further understand the context around a coding task and produce more nuanced and functional code with fewer attempts.
"At Block, open source is more than a development model—it’s the foundation of our work and a commitment to creating technology that drives meaningful change and serves as a public good for all,” said Dhanji R. Prasanna, Chief Technology Officer at Block. “Open technologies like the Model Context Protocol are the bridges that connect AI to real-world applications, ensuring innovation is accessible, transparent, and rooted in collaboration. We are excited to partner on a protocol and use it to build agentic systems, which remove the burden of the mechanical so people can focus on the creative.”
Instead of maintaining separate connectors for each data source, developers can now build against a standard protocol. As the ecosystem matures, AI systems will maintain context as they move between different tools and datasets, replacing today's fragmented integrations with a more sustainable architecture.
Getting started
Developers can start building and testing MCP connectors today. All Claude.ai plans support connecting MCP servers to the Claude Desktop app.
Claude for Work customers can begin testing MCP servers locally, connecting Claude to internal systems and datasets. We'll soon provide developer toolkits for deploying remote production MCP servers that can serve your entire Claude for Work organization.
To start building:
- Install pre-built MCP servers through the Claude Desktop app
- Follow our quickstart guide to build your first MCP server
- Contribute to our open-source repositories of connectors and implementations
An open community
We’re committed to building MCP as a collaborative, open-source project and ecosystem, and we’re eager to hear your feedback. Whether you’re an AI tool developer, an enterprise looking to leverage existing data, or an early adopter exploring the frontier, we invite you to build the future of context-aware AI together.
Android Linux
2025-03-16

Android 的 Linux 终端应用现已广泛适用于 Pixel 设备,获取方法如下
你需要一部 Pixel 设备、最新的软件更新,以及几分钟的时间。
作者:Andy Walker
2025 年 3 月 7 日
TL;DR(摘要)
- Android 的 Linux 终端应用现已广泛适用于运行 2025 年 3 月更新的 Pixel 设备。
- 该基于 Debian 的环境允许用户随身携带完整的 Linux 实例,尽管仍缺乏一些便捷功能。
去年年底,我们曾报道过,Google 正在开发一款原生的 Linux 终端应用,使智能手机用户能够随身携带桌面级 Linux 发行版。从那时起,我们已经看到该应用随着 Android 15 测试版推送。而现在,随着 2025 年 3 月的 Pixel 更新,这款应用的稳定版本已更广泛地适用于运行最新稳定版 Android 的 Google 手机用户。
在 “设置” > “系统” > “开发者选项” 中启用 Linux 开发环境后,Linux 终端应用的图标会自动出现。当我激活该功能并点击图标时,系统提示我下载 567MB 的文件。
尽管我在 Pixel 8 上首次尝试运行该终端时失败了,但第二次尝试成功了。越过这个小障碍后,我便可以通过应用列表中的快捷方式打开终端,并运行诸如 help、df 和 free -m 等基础命令。当然,你也可以执行更高级的命令。
值得注意的是,该 Linux 环境基于 Debian,这是最成熟的 Linux 发行版之一。与原生终端应用 Termux 不同,Linux 终端应用是通过 Android 虚拟化框架(AVF) 在虚拟机中运行的。
不过,该 Linux 终端应用仍然缺少一些功能。其中最大的缺陷可能是 不支持 GUI 应用,但正如我们之前进行的《Doom》演示所示,这项功能计划在 Android 16 中推出。
对大多数用户来说,Android 上的 Linux 终端应用或许并不算特别激动人心或具有颠覆性,但对于开发者和高级用户而言,这无疑是一个巨大的进步。它使用户能够在移动设备上运行桌面级 Linux 应用,为各种需求提供便利。
科学 物理
2025-01-24
工业革命之前,世界是漆黑的,灯光极其昂贵,火是唯一的人造光源。
历史上,人造光一直是富人和有权势的人的特权,生产和维护既费力又肮脏,可用性和质量都很差。穷人很难获得人造光,总是生活在黑暗中。
古代房屋在夜晚有蜡烛照明,是巨大财富的标志。当时,蜂蜡制成的优质蜡烛是最好的光源,但天然蜂蜡的供应有限,加上手工制作的繁琐,除了最富有的人之外,其他人都买不到优质蜡烛。
一位作家写道:"打开你的冰箱门,你召唤出的光线比 18 世纪大多数家庭所享受的光线总量还要多。"
后来人们发现,鲸油(鲸鱼的皮下脂肪)是更好的蜡烛材料,燃烧时发出干净、稳定的光,是工业革命早期了最好的照明,但它也非常昂贵。
捕鲸业为世界带来了照明,但也将一些鲸鱼物种推向了灭绝的边缘。仅在 1700 年至 1800 年间,为了得到鲸油,就至少有 300,000 头鲸鱼被屠杀。
1800 年代初,欧洲和美国出现了燃气照明,燃烧煤气来发光。然而,燃气照明的安装和维护费用昂贵,而且有危险。所以,煤气灯一般不用在家里,而用在工商业和大城市的路灯。
煤气灯很亮,比之前的任何灯至少亮 20 倍。使用燃气照明是人类第一次体验明亮的照明。
1846 年,天然气生产的副产品煤焦油(简称煤油)做成灯,用来照明。煤油开始取代鲸油,导致照明成本直线下降,并且燃烧时明亮、无味。
正是因为煤油,夜间第一次变得明亮了,天黑后也能生产和娱乐。
19 世纪后半期,托马斯·爱迪生(Thomas Edison)发明了电灯,电照明的时代从此来临。